Spectral analysis and preconditioning techniques for radial basis function collocation matrices
نویسندگان
چکیده
Meshless collocation methods based on radial basis functions lead to structured linear systems which, for equispaced grid points, have almost a multilevel Toeplitz structure. In particular, if we consider partial differential equations (PDEs) in two dimensions then we find almost (up to a “low-rank” correction given by the boundary conditions) two-level Toeplitz matrices, i.e., block Toeplitz with Toeplitz blocks structures, where both the number of blocks and the block-size grow with the number of collocation points. In [D. Bini, A. De Rossi, B. Gabutti, Linear Algebra Appl., 428 (2008), 508–519] upper bounds for the condition numbers of the Toeplitz matrices approximating a one-dimensional model problem were proved. Here we refine the one-dimensional results, by explaining some numerics reported in the previous paper, and we show a preliminary analysis concerning conditioning, extremal spectral behavior, and global spectral results in the two-dimensional case for the structured part. By exploiting recent tools in the literature, a global distribution theorem in the sense of Weyl is proved also for the complete matrix-sequence, where the low-rank correction due to the boundary conditions is taken into consideration. The provided spectral analysis is then applied to design effective preconditioning techniques in order to overcome the ill–conditioning of the matrices. A wide numerical experimentation, both in the one and two-dimensional case, confirms our analysis and the robustness of the proposed preconditioners. Copyright c © 2000 John Wiley & Sons, Ltd.
منابع مشابه
Analysis of Rectangular Stiffened Plates Based on FSDT and Meshless Collocation Method
In this paper, bending analysis of concentric and eccentric beam stiffened square and rectangular plate using the meshless collocation method has been investigated. For detecting the governing equations of plate and beams, Mindlin plate theory and Timoshenko beam theory have been used, respectively, with the stiffness matrices of the plate and the beams obtained separately. The stiffness matric...
متن کاملA numerical study of a technique for shifting eigenvalues of radial basis function differentiation matrices
Radial Basis Function (RBF) collocation methods for time-dependent PDEs, in particular hyperbolic PDEs, are known to be difficult to implement in a way so that they are stable for time integration. It has been hypothesized that the instability is due to the way that boundary conditions are applied and to the relatively large errors in boundary regions. We describe a preconditioning technique th...
متن کاملPreconditioning of Radial Basis Function Interpolation Systems via Accelerated Iterated Approximate Moving Least Squares Approximation
The standard approach to the solution of the radial basis function interpolation problem has been recognized as an ill-conditioned problem for many years. This is especially true when infinitely smooth basic functions such as multiquadrics or Gaussians are used with extreme values of their associated shape parameters. Various approaches have been described to deal with this phenomenon. These te...
متن کاملApproximate solution of the fuzzy fractional Bagley-Torvik equation by the RBF collocation method
In this paper, we propose the spectral collocation method based on radial basis functions to solve the fractional Bagley-Torvik equation under uncertainty, in the fuzzy Caputo's H-differentiability sense with order ($1< nu < 2$). We define the fuzzy Caputo's H-differentiability sense with order $nu$ ($1< nu < 2$), and employ the collocation RBF method for upper and lower approximate solutions. ...
متن کاملCollocation Method using Compactly Supported Radial Basis Function for Solving Volterra's Population Model
In this paper, indirect collocation approach based on compactly supported radial basis function (CSRBF) is applied for solving Volterra's population model. The method reduces the solution of this problem to the solution of a system of algebraic equations. Volterra's model is a non-linear integro-differential equation where the integral term represents the effect of toxin. To solve the pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Numerical Lin. Alg. with Applic.
دوره 19 شماره
صفحات -
تاریخ انتشار 2012